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Identification of Alzheimer’s 
disease using a convolutional 
neural network model based 
on T1‑weighted magnetic 
resonance imaging
Jong Bin Bae1,2,6, Subin Lee3,6, Wonmo Jung4, Sejin Park4, Weonjin Kim4, Hyunwoo Oh4, 
Ji Won Han1,2, Grace Eun Kim3, Jun Sung Kim3, Jae Hyoung Kim5 & Ki Woong Kim1,2,3*

The classification of Alzheimer’s disease (AD) using deep learning methods has shown promising 
results, but successful application in clinical settings requires a combination of high accuracy, 
short processing time, and generalizability to various populations. In this study, we developed a 
convolutional neural network (CNN)‑based AD classification algorithm using magnetic resonance 
imaging (MRI) scans from AD patients and age/gender‑matched cognitively normal controls from 
two populations that differ in ethnicity and education level. These populations come from the Seoul 
National University Bundang Hospital (SNUBH) and Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). For each population, we trained CNNs on five subsets using coronal slices of T1‑weighted 
images that cover the medial temporal lobe. We evaluated the models on validation subsets from both 
the same population (within‑dataset validation) and other population (between‑dataset validation). 
Our models achieved average areas under the curves of 0.91–0.94 for within‑dataset validation and 
0.88–0.89 for between‑dataset validation. The mean processing time per person was 23–24 s. The 
within‑dataset and between‑dataset performances were comparable between the ADNI‑derived and 
SNUBH‑derived models. These results demonstrate the generalizability of our models to different 
patients with different ethnicities and education levels, as well as their potential for deployment as 
fast and accurate diagnostic support tools for AD.

The rapid and accurate determination of Alzheimer’s disease (AD) based on structural magnetic resonance 
imaging (MRI) has garnered significant interest among researchers, owing to an incremental amount of recent 
studies being driven by deep learning techniques that have achieved state-of-the-art performance in various 
fields, including medical image analysis. In particular, convolutional neural networks (CNNs) are predominantly 
employed for the analysis of image data based on their ability to handle large unstructured data and to extract 
important features  automatically1–3.

Structural-MRI-based CNN models for the differentiation of patients with Alzheimer’s disease (AD) and 
cognitively normal (CN) controls have been reported in numerous previous  studies4–9. However, several factors 
in these previous studies have limited the use of their models in clinical settings. First, the populations used for 
development and testing were demographically biased, meaning the true generalizability of these methods to 
other populations is unknown. Several previous studies have used the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) dataset for algorithm development and validation, excluding two studies that used the Minimal 
Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD)  dataset7 and the Australian Imaging, Biomarker, 
and Lifestyle Flagship Study of Ageing (AIBL)  dataset4 for validation. However, the ADNI, MIRIAD, and AIBL 
datasets are all largely comprised of Caucasians with high education  levels4,7,10. Education  level11 and  ethnicity12,13 
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are known to affect brain structures, leading to the question of how models may perform for individuals with 
a lower education level and/or different ethnicity. Additionally, all previous studies have used 3D images as 
 inputs4–9,14, which significantly increases computational loads and limits the construction of sufficiently deep 
and large neural networks. The vast number of parameters introduced by using large 3D images as inputs require 
a huge number of layers to be able to gain the required representational  power15; however, the construction of 
such a huge number of layers is typically infeasible due to limited computational resources and GPU memory. 
Although some studies have circumvented this problem by using 3D small patches or selected regions of interest 
instead of complete 3D  images5–8, the images used were still very large. Meanwhile, several advanced networks 
that are commonly used as backbones in many studies take 2D images as inputs. In other words, using MRI 
scans as 2D images may be  beneficial16.

In this study, we developed an AD classification algorithm based on 2D slices of T1-weighted MRI images that 
include AD-sensitive brain regions from two independent populations with different ethnic and demographic 
backgrounds. We cross-validated the results between the two populations.

Results
Per-person preprocessing required 11.24 ± 0.59 s for the ADNI dataset and 11.88 ± 0.58 s for the SNUBH dataset. 
Per-person data analysis required 11.94 ± 0.59 s for the ADNI dataset and 11.97 ± 0.58 s for the SNUBH dataset. 
The size of input data per person was 1.58 ± 0.25 MB for the ADNI dataset and 1.70 ± 0.24 MB for the SNUBH 
dataset.

The models developed from the ADNI dataset exhibited a mean within-dataset area under the receiver 
operating characteristic (ROC) curve (AUC(i.e., area under the curve)), accuracy, sensitivity, and specificity of 
0.94, 0.89, 0.88, and 0.91, respectively (Table 1), and a between-dataset AUC, accuracy, sensitivity, and specificity 
of 0.88, 0.83, 0.76, and 0.89, respectively (Table 2). Although the between-dataset performances of the ADNI-
derived models were very  good17, they were lower than their within-dataset performances (t = 5.52, p = 0.005 for 
AUC; t = 5.57, p = 0.005 for accuracy; t = 2.56, p = 0.06 for sensitivity; t = 0.51, p = 0.64 for specificity).

The models developed from the SNUBH dataset exhibited a mean within-dataset AUC, accuracy, sensitiv-
ity, and specificity of 0.91, 0.88, 0.85, and 0.91, respectively (Table 1), and a between-dataset AUC, accuracy, 
sensitivity, and specificity of 0.89, 0.82, 0.79, and 0.85, respectively (Table 2). The between-dataset performances 
of the SNUBH-derived models were also very  good17. The between-dataset and within-dataset AUC, accuracy, 
and specificity were comparable, but the between-dataset sensitivity was slightly lower than the within-dataset 
sensitivity (t = 1.26, p = 0.28 for AUC; t = 2.64, p = 0.06 for accuracy; t = 4.17, p = 0.01 for sensitivity; t = 1.86, 
p = 0.14 for specificity).

The within-dataset performances (t = 1.93, p = 0.09 for AUC; t = 0.40, p = 0.70 for accuracy; t = 0.72, p = 0.49 
for sensitivity; t = − 0.14, p = 0.89 for specificity) and between-dataset performances (t = − 1.53, p = 0.17 for AUC; 
t = 1.01, p = 0.34 for accuracy; t = − 0.79, p = 0.45 for sensitivity; t = 1.64, p = 0.14 for specificity) were comparable 
between the ADNI-derived and SNUBH-derived models.

Table 1.  Within-dataset testing of AD classification algorithms. AD classification algorithms were developed 
by randomly selecting 80% of the participants (156 AD patients and 156 CN controls) in each dataset (ADNI 
and SNUBH) and tested within each dataset on the remaining 20% of the participants (39 AD patients and 39 
CN controls). AUC  area under the receiver operating characteristic curve, ADNI dataset from the Alzheimer’s 
Disease Neuroimaging Initiative, SNUBH dataset from the Seoul National University Bundang Hospital, SD 
standard deviation. a 95% confidence intervals in parentheses. b Comparison of performances on the ADNI and 
SNUBH datasets using Student’s t-test.

Trial AUC Accuracy Sensitivity Specificity

ADNI

1st  triala 0.90 (0.81–0.95) 0.85 (0.77–0.93) 0.83 (0.67–0.93) 0.90 (0.75–0.97)

2nd  triala 0.97 (0.90–1.00) 0.91 (0.85–0.97) 0.85 (0.68–0.95) 0.96 (0.85–1.00)

3rd  triala 0.95 (0.88–0.99) 0.92 (0.86–0.98) 0.94 (0.81–0.99) 0.91 (0.77–0.97)

4th  triala 0.95 (0.87–0.99) 0.89 (0.81–0.96) 0.97 (0.85–1.00) 0.82 (0.67–0.92)

5th  triala 0.95 (0.87–0.99) 0.89 (0.81–0.96) 0.81 (0.65–0.92) 0.95 (0.84–0.99)

Mean (SD) 0.94 (0.03) 0.89 (0.03) 0.88 (0.07) 0.91 (0.06)

SNUBH

1st  triala 0.94 (0.87–0.98) 0.92 (0.86–0.98) 0.92 (0.79–0.98) 0.93 (0.80–0.98)

2nd  triala 0.88 (0.79–0.94) 0.82 (0.74–0.91) 0.79 (0.64–0.89) 0.87 (0.70–0.96)

3rd  triala 0.87 (0.77–0.94) 0.85 (0.77–0.93) 0.83 (0.66–0.93) 0.86 (0.72–0.95)

4th  triala 0.90 (0.81–0.96) 0.87 (0.80–0.95) 0.84 (0.69–0.93) 0.91 (0.77–0.98)

5th  triala 0.94 (0.86–0.98) 0.94 (0.88–0.99) 0.88 (0.73–0.97) 0.98 (0.77–0.98)

Mean (SD) 0.91 (0.03) 0.88 (0.05) 0.85 (0.05) 0.91 (0.05)

Statisticsb

T 1.93 0.40 0.72 − 0.14

P value 0.09 0.70 0.49 0.89
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Discussion
In this study, we propose a CNN-based algorithm that uses MRI coronal slices covering the medial temporal lobe 
to classify AD patients and CN controls. We trained and validated our algorithm on two independent populations 
with different ethnicities and education levels. Experimental results demonstrate that our algorithm is fast and 
can provide high accuracy, regardless of the ethnic and/or demographic characteristics of subjects.

Our algorithm considers the medial temporal lobe atrophy (MTA) scale, which is widely used in clinical 
practice to determine the presence of AD-related neurodegeneration. This scale is also used as neurodegenerative 
evidence for AD according to the National Institute on Aging and Alzheimer’s Association research guidelines/
framework18. Although other regions may also provide useful information for AD classification, there is known 
to be slight inter-subject variability in exact atrophy  patterns19 and medial temporal lobe (MTL)-focused atrophy 
is the most common type. Therefore, attempting to add other regions may confuse the algorithm and result in 
potential misclassification with other diseases that share atrophy patterns in similar areas. Another reason we 
selected the 30 coronal slices is to cover the entire length of the hippocampus and to give additional weight/
attention to those slices because that area contains the most essential information. The robust performance of 
the proposed algorithm in our experimental results suggests that the assigned weights were appropriate.

To the best of our knowledge, ours is the first CNN-based AD classification algorithm that uses 2D images 
as input data. The accuracy of our ADNI-based models (AUC = 0.890) is greater than those of previous deep 
learning methods that also used ADNI  data20–23. Although using 2D images as inputs for a neural network may 
provide less information compared to 3D images or 3D patches, we were able to construct a network containing 
487 layers, which is much deeper than previous 3D-image-based CNNs (≤ 39 layers), allowing it to learn more 
complicated representations. Using 2D images as input data has several practical advantages. First, such images 
are more widely applicable in clinical settings, where 3D MRI scans may not always be available. Second, it 
can reduce processing time and computational resources significantly for implementation in clinical settings, 
where clinicians are typically pressed for time and computational resources are limited. CNN models that take 
2D data as inputs have lower computational complexity and lower memory bandwidth demands than 3D CNN 
 models24. Finally, there are numerous public datasets of 2D images, such as ImageNet, CIFAR, Birdsnap, Stanford 

Table 2.  Between-dataset testing of AD classification algorithms. AD classification algorithms were developed 
by randomly selecting 80% of the participants (156 AD patients and 156 CN controls) in each dataset (ADNI 
and SNUBH) and tested within each dataset on the remaining 20% of the participants (39 AD patients and 39 
CN controls). AUC  area under the receiver operating characteristic curve, ADNI dataset from the Alzheimer’s 
Disease Neuroimaging Initiative, SNUBH dataset from the Seoul National University Bundang Hospital, SD 
standard deviation. a 95% confidence intervals in parentheses. b Comparison of performances on the ADNI 
and SNUBH datasets using Student’s t-test. c Comparison of within-dataset and between-dataset performances 
using a paired t-test.

Trial AUC Accuracy Sensitivity Specificity

ADNI

1st  triala 0.87 (0.84–0.90) 0.82 (0.78–0.86) 0.80 (0.74–0.85) 0.84 (0.78–0.89)

2nd  triala 0.88 (0.85–0.91) 0.83 (0.79–0.87) 0.77 (0.70–0.83) 0.89 (0.83–0.93)

3rd  triala 0.88 (0.84–0.91) 0.83 (0.79–0.87) 0.74 (0.67–0.80) 0.92 (0.88–0.96)

4th  triala 0.89 (0.86–0.92) 0.84 (0.80–0.87) 0.74 (0.68–0.80) 0.93 (0.88–0.96)

5th  triala 0.86 (0.82–0.89) 0.81 (0.77–0.85) 0.76 (0.69–0.82) 0.86 (0.80–0.90)

Mean (SD) 0.88 (0.01) 0.83 (0.01) 0.76 (0.03) 0.89 (0.04)

SNUBH

1st  triala 0.90 (0.87–0.93) 0.83 (0.79–0.86) 0.85 (0.79–0.90) 0.80 (0.74–0.85)

2nd  triala 0.88 (0.84–0.91) 0.81 (0.77–0.85) 0.72 (0.65–0.78) 0.90 (0.85–0.94)

3rd  triala 0.90 (0.86–0.92) 0.82 (0.79–0.86) 0.79 (0.73–0.85) 0.86 (0.80–0.90)

4th  triala 0.89 (0.85–0.92) 0.83 (0.79–0.87) 0.82 (0.75–0.87) 0.84 (0.78–0.89)

5th  triala 0.88 (0.84–0.91) 0.80 (0.76–0.84) 0.77 (0.71–0.83) 0.83 (0.77–0.88)

Mean (SD) 0.89 (0.01) 0.82 (0.01) 0.79 (0.05) 0.85 (0.04)

Statistics

 ADNI—SNUBHb

t − 1.53 1.01 − 0.79 1.64

P value 0.17 0.34 0.45 0.14

 Within—betweenc

  ADNI

t 5.52 5.57 2.56 0.51

P value 0.005 0.005 0.06 0.64

  SNUBH

t 1.26 2.64 4.17 1.86

P Value 0.28 0.06 0.01 0.14
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Cars, and Oxford-IIIT Pets, which can contribute to the rapid advancement and development of novel 2D CNN 
 architectures16. Therefore, using 2D MRI slices allows us to apply the latest CNN architectures.

To the best of our knowledge, all previous studies that have validated AD classification models have consid-
ered nearly homogenous ethnic populations, typically consisting of Caucasians, and no cross-ethnicity inves-
tigations have been performed. This introduces several potential biases into the evaluation of a model’s true 
accuracy and robustness—brain shape is known to be variant across ethnicities, with the brains of Asians being 
wider and shorter than those of  Caucasians12. Agreement between clinical and pathological diagnoses of AD also 
differs between ethnicities, with agreement being 90% for  Caucasians25 but only 34% for Japanese  Americans26. 
Additionally, demographic characteristics such as education level are known to alter AD-associated structural 
brain  changes11. Therefore, to assess the true generalizability and practical utility of MRI-based AD classification 
algorithms, it is important to cross-validate an algorithm that is trained on one population on other populations 
with different ethnic and demographic characteristics. In this study, for the first time, we directly cross-validated 
models trained on a population that consists mainly of highly educated Caucasians and a population that consists 
mainly of moderately educated Asians. We found that the between-dataset performances of both the ADNI-
derived and SNUBH-derived models exhibited good accuracy (AUC = 0.88 and 0.89, respectively) and were not 
affected by the population used for training (p = 0.17). In other words, when our model is trained on population 
A, it is able to perform well on population B, and vice versa (at least for Caucasians and Asians). The consistent 
performances of our algorithm on both populations suggest that deep learning models using MRI images can 
be transferrable across populations of different ethnicities. This can be attributed to the fact that the signature 
atrophy patterns of AD (mainly in the hippocampus and MTL structures) are consistent across different ethnic 
populations, including  Caucasians19,  Asians27, and  Africans28. This consistency may give MRI-based algorithms 
an advantage in being able to generalize from one ethnic population to another, whereas AD classification 
methods based on neuropsychiatric tests may have limitations in generalizability based on underlying ethnic 
differences in terms of language, educational level, and culture.

There are several limitations in this study that must be addressed. One limitation is that the MRI images from 
SNUBH were acquired using scanners from a single manufacturer (Philips), whereas the MRI images from ADNI 
were obtained using various scanners (Siemens, GE, and Philips) with different MRI protocols. This may have 
contributed to the result that the between-dataset performances of the models tended to be lower than the within-
dataset performances. Future studies should investigate the effects of scanners and/or scanning protocols on the 
diagnostic accuracy of deep-learning-based models. Additionally, our dataset did not include individuals with 
mild cognitive impairment (MCI), which are considered to be high-risk individuals for dementia. However, MCI 
is a pathologically heterogeneous group with multiple etiologies and  causes29, with approximately 50% having 
AD  pathology30. Because we were not able to check for the presence of AD pathology in this study (which would 
require amyloid positron emission tomography (PET) scans), we did not include MCI in our model because 
this could potentially offset the accuracy of the model. Although we were unable to utilize MCI due to AD in 
our model construction or evaluate our model on MCI due to AD, we believe that when used in a well-designed 
experiment on PET-confirmed MCI patients due to AD, our model will still show a satisfactory performance. 
This is because we only considered mild AD patients with a clinical dementia rating (CDR) score of 0.5 to 1.

In this study, we developed and extensively validated an AD classification CNN-based algorithm using two 
independent populations. Our approach using 2D slices corresponding to the early neurodegenerative sites of AD 
has practical advantages in terms of both processing speed and accuracy, regardless of a subject’s demographic 
characteristics.

Methods
Datasets. We used two datasets in this study: one from the ADNI and the other from the SNUBH. From 
ADNI, we included participants in both ADNI1 and ADNI2 who had 3.0  T T1-weighted images and were 
diagnosed as CN or mild AD (CDR of 0.5 or 1). For up-to-date information about the ADNI, see https ://www.
adni-info.org. From the SNUBH, we included AD patients and CN controls with T1-weighted images whose 
age, sex, and CDR were matched to the patients from the ADNI. However, we were unable to further match for 
education and cognitive level because participants from the ADNI were more educated and performed better 
on the Mini Mental State Examination (MMSE) than those from the SNUBH. In the case where a participant 
has multiple MRI scans from different timepoints, we selected only one MRI scan based on the participant’s age 
and diagnosis at the time of assessment. We selected the scan whose demographic factors would contribute to a 
more demographically balanced dataset. In terms of ethnicity, the ADNI dataset contained Caucasians (83.59%), 
African-Americans (4.87%), Hispanics (5.64%), Asians (2.05%), and others (3.85%), while the SNUBH dataset 
contained only Koreans (Table 3).

The protocol for this study was approved by the Institutional Review Board of the SNUBH. We acquired 
written informed consent from the subjects or their legal guardians. The ADNI was approved by the institu-
tional review board at each site and all participants gave their written consent. All procedures were performed 
in accordance with the relevant guidelines and regulations.

Diagnostic criteria. In both the ADNI and SNUBH, AD was diagnosed according to the National Institute 
of Neurological and Communicative Disorders and Stroke, and the Alzheimer’s Disease and Related Disorders 
Association criteria for probable  AD31. CN was defined by the absence of subjective cognitive complaints and 
a normal score on cognitive tests. Normal scores on cognitive tests were defined differently in each population, 
owing to the fact that the populations used a different set of tools for objective cognitive evaluation. In the ADNI, 
the Logical Memory II subscale of the Wechsler Memory Scale-Revised score was used, with scores of > 8, > 4, 
and > 2 for > 16, 8–15, and 0–7 years of education, respectively, indicating normal cognition. In SNUBH, the 

https://www.adni-info.org
https://www.adni-info.org
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Consortium to Establish a Registry for Alzheimer’s Disease Korean version was used, with standard deviations 
(SDs) greater than − 1.5 for the age-, sex-, and education-adjusted norms on ten neuropsychological tests (i.e., 
Categorical Fluency Test, modified Boston Naming Test, Word List Memory Test, Constructional Praxis Test, 
Word List Recall Test, Word List Recognition Test, Constructional Recall Test, Trail Making Test A, Digit Span 
Test, and Frontal Assessment Battery) indicating normal  cognition32.

Image acquisition and preprocessing. For the ADNI dataset, 3D T1-weighted MRI scans were acquired 
in digital imaging and communications in medicine (DICOM) format using Siemens (49.23%), GE (29.74%), 
and Philips (21.03%) scanners (details regarding the ADNI MRI data acquisition protocol can be found on 
ADNI’s official webpage: adni.loni.usc.edu). For the SNUBH dataset, we acquired 3D structural T1-weighted 
MRI images in DICOM format using Philips scanners only (voxel dimensions = 1.0 × 0.5 × 0.5 mm, slice thick-
ness = 1.0 mm, echo time = 8.15 or 8.20 ms, repetition time = 4.61 ms, flip angle = 8°, field of view = 240 × 240 mm).

The 3D T1-weighted brain image inputs were first resampled into a grid of 256 × 256 × 256 voxels with an 
isotropic spatial resolution of 1 × 1 × 1 mm using the mri_convert routine in  FreeSurfer33. From the resampled 
complete images, coronal slices around the MTL were extracted using two rounds of rigid transformation (Fig. 1). 
In the first rigid transformation, the position of the input image was matched to a template constructed from a 
CN elderly  population12. The template-registered input image was then processed by a custom brain extraction 
algorithm to extract only the brain parenchyma. The custom brain extraction algorithm is based on a 3D UNet 
trained to extract brain parenchyma using labels generated by the Brain Extraction Tool in FMRIB Software 
 Library34. In the second rigid transformation, the skull-stripped and template-registered input images were 
registered to a skull-stripped version of the template from the first step (skull-stripped using the same custom 
algorithm). In this manner, the two-step rigid transformation process was used to increase the accuracy of the 
registration of each subject’s brain parenchyma to the template. Rigid transformation, which was performed 
using the Advanced Normalization Tools library, was used to avoid changing the morphological structure of 
the brain  parenchyma35.

Next, 2D coronal slices were extracted from the output images from the second rigid transformation. Among 
the 256 coronal slices, 30 coronal slices starting from the corpus of the hippocampus (at the level of the anterior 
pons) were extracted. These slices were selected based on the criteria used for conventional coronal slice selec-
tion in the MTA visual rating  scale36. In each slice, min–max normalization was applied to bound the values of 
the images between zero and one.

Deep learning model. Each of the preprocessed coronal slices were then fed individually into our neu-
ral network and the outputs for each slice were averaged to perform classification for the corresponding sub-
ject. For the neural network, we used the Inception-v4 architecture as a backbone with a few  modifications37. 
Inception-v4 is a 2D image classification neural network that has been shown to achieve very good performance 
with low computational cost. We also adopted its pre-trained weights (https ://githu b.com/Caden e/pretr ained 
-model s.pytor ch), which were obtained from a subset of ImageNet used for a classification task in the ImageNet 
Large-Scale Visual Recognition Competition in 2012, which is a training dataset containing 1.28 million natural 
images from 1000  categories37,38. The Inception-v4 architecture was designed to take 2D images with three RGB 
channels as inputs. Therefore, we triplicated our greyscale coronal slices into three channels for consistency. 
After a single coronal slice was entered into the Inception backbone architecture, a feature vector containing 
1024 values representing the results of convolution was produced. We then added three additional values to the 
end of the vector (subject age, sex, and the number of coronal slice being evaluated). We added the subject age 
because mild MTA is observed in CN elderly individuals, that is the magnitude of atrophy should be evaluated 
with reference to the subject’s age. The final concatenated feature vector containing 1027 values was then fed into 
the final classifier module. The classifier module of Inception-v4 was replaced with a fully connected layer with 
1027 input nodes and two output nodes. Finally, the output of the fully connected layer was fed into a softmax 
output layer to predict the probability that an input brain MR image indicates the presence of AD. Our CNN 
model contains a total of 497 layers. The architecture of our model is illustrated in Fig. 2.

AD classification is a binary classification problem for predicting the presence of AD. Each slice image is 
labeled as AD or CN and the results for all slices are averaged. The inputs are 2D coronal slices  xi from a patient’s 

Table 3.  Characteristics of participants. AD Alzheimer’s disease, CN cognitively normal, ADNI Alzheimer’s 
Disease Neuroimaging Initiative, SNUBH Seoul National University Bundang Hospital, SD standard deviation, 
CDR clinical dementia rating scale, SOB sum of box scores of CDR, MMSE Mini Mental State Examination.

AD CN

ADNI SNUBH t or χ2 P Value ADNI SNUBH t or χ2 P value

N 195 195 - - 195 195 – –

Age (years, mean ± SD) 74.7 ± 8.2 74.5 ± 8.7 0.2 0.84 74.8 ± 6.6 73.9 ± 6.3 1.4 0.17

Sex (women, %) 91 (46.7%) 91 (46.7%) 0.0  > 0.99 91 (46.7%) 91 (46.7%) 0.0  > 0.99

Education (years, mean ± SD) 15.5 ± 2.9 10.2 ± 5.4 12.2  < 0.001 16.0 ± 2.7 11.4 ± 4.8 11.6  < 0.001

CDR (score, mean ± SD) 0.8 ± 0.3 0.8 ± 0.3 0.0  > 0.99 0.0 ± 0.0 0.0 ± 0.0 0.0  > 0.99

SOB (score, mean ± SD) 4.5 ± 1.6 4.3 ± 1.9 1.0 0.30 0.0 ± 0.0 0.0 ± 0.0 0.0  > 0.99

MMSE (score, mean ± SD) 23.0 ± 2.3 18.4 ± 5.0 11.7  < 0.001 29.1 ± 1.3 27.2 ± 2.4 9.5  < 0.001

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
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3D MRI brain scan x, and the output is y, which is a value indicating the probability of the presence of AD. Dur-
ing training, the binary cross-entropy loss of the predicted outputs for a single batch is calculated as follows:

where  xi is a slice from patient x,  yi is a true class of  xi, and N is the number of samples in a single batch. During 
validation and testing, the averaged probability of all input slices  (x1,  x2, …,  xn) for patient x was used as the final 
predicted probability of the presence of AD. All models were optimized using mini-batch stochastic gradient 
descent with Nesterov  momentum39 and a batch size of 64 to maximize GPU utilization. We used a weight decay 
of 5 × 10−5 and base learning rate of 0.001, which decayed by 0.1 three times until the validation loss plateaus.

Real-time data augmentation was performed to make our models learn features that remained invariant under 
geometric and intensity perturbations. Rotation, scaling, translation, contrast changes, and gamma adjustment 
were applied for data augmentation. All parameters for the data augmentation operations were randomly selected 
from predefined ranges.

All experiments were conducted using NVIDIA 1080ti GPUs with 11 GB of memory per GPU and all deep 
learning models were implemented using Pytorch (v.0.4.1). We performed stratified fivefold cross-validations 
to distribute samples equally by considering class balance between the training set and validation set. In each 
fold, we terminated training if the moving average of validation accuracy did not improve by more than 5 × 104 
within the last 5 epochs.

To predict the class of a subject during validation and testing, we used the average of the predicted probabili-
ties for each of the 30 slices extracted from that subject. The final prediction values for the test sets were estimated 
from the average ensemble values of the five runs of fivefold cross-validation for the development set (Fig. 3).

Statistical analysis. For each dataset (ADNI and SNUBH), we randomly divided the MRI scans from 390 
participants and assigned 80% for development and 20% for testing (randomization). This resulted in a develop-
ment set containing 156 AD and 156 CN patients, and a test set containing 39 AD and 39 CN patients for each 

J(w) = −
1

N

N∑

n=1

[ynlog
(
f
(
xni ;w

))
ŷn + (1− yn)log(1− f (xni ;w))],

Figure 1.  Preprocessing for extracting 2D coronal slices of the medial temporal lobe from complete 3D brain 
scans. The input whole-brain 3D T1-weighted MRI images are subjected to an initial rigid transformation to fit 
a template, followed by brain extraction (skull stripping). Next, a second rigid transformation is applied to the 
skull-stripped version of the template. Once the subject image is in the same space as the template, the range of 
slices that correspond to the MTL in the template are used to extract coronal slices from the template-registered 
output subject image.
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Figure 2.  Diagram of the network architecture. For each subject, 1 out of 30 coronal slices are fed into the 
model independently, and the results of the 30 slices are averaged to produce a AD probability for that subject. 
The first part of the model consists of the architecture of a pretrained network (Inception V4), and the last part 
of the model involves the addition of the subject’s age, sex, and slice location (a). The specific constituents of 
Inception v4 are shown (stem, Inception-A, Inception-B, Inception-C, Reduction-A, Reduction-B) (b). 
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dataset. We trained an AD classification model using the 80% development set and tested it using the 20% testing 
set for the ADNI and SNUBH datasets separately (within-dataset testing). We then retested the AD classifica-
tion model trained on the ADNI development set on the entire SNUBH dataset and that trained on the SNUBH 
development set on the entire ADNI dataset (between-dataset testing). We repeated this process five times for 
each of the ADNI and SNUBH datasets (five trials).

We tested the performance of the algorithms based on ROC curve analyses. For model evaluation, we meas-
ured the AUC, accuracy, sensitivity, and specificity of each model for each test dataset. We derived sensitivity 
and specificity values according to Youden’s  index40 and calculated accuracy by counting the number of true 
positive and true negative cases at the optimal associated criterion according to the Youden’s index and dividing 
the result by the total number of cases. We compared the AUCs of the algorithms developed from the two datasets 
using the DeLong  test41 and compared accuracy, sensitivity, and specificity using Student’s t-test. We compared 
continuous variables based on independent samples using Student’s t-test or a paired t-test as appropriate and 
compared categorical variables using the chi-squared test. We considered two-sided p-values less than 0.05 to 
be statistically significant.

We performed statistical analyses using SPSS version 20 (SPSS, Inc., Chicago, IL, USA) and MedCalc version 
16.4.3 (MedCalc Software, Mariakerke, Belgium).

Data availability
The data that support the findings of this study are available from the authors upon reasonable request.
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